

Neurocognitive performance as a function of preferred form of gambling in treatment seeking gamblers

Dr Amanda Roberts

School of Psychology

University of Lincoln, UK

7th November 2019

Executive functions

- Ability to make judgments, decisions and problem solving.
- Attentional control, cognitive inhibition, inhibitory control, working memory, cognitive flexibility.
- Disruption important in development and maintenance of addictive behaviors.

Prefrontal cortex

Disordered gamblers

 Disordered gamblers display deficits in impulsivity and risky decision-making:

- IGT, selecting more cards from disadvantageous decks (Kovacs, et al., 2017).
- Elevated Impulsivity measured by delay discounting tasks (i.e. impulsive choice)
 (Michalczuk et al, 2011).
- These deficits vary.

Forms of gambling

Fixed Odds Betting Terminals

- Simulated games: fixed odds; Roulette usually game of choice.
- Particularly problematic form of gambling.
- London National Problem
 Gambling Clinic/ Gordon
 Moody Association: FOBTs
 preferred form of gambling in
 (60% of the sample).

Fixed Odds Betting Terminals

- 'Crack cocaine of gambling'.
- Revenue over £1.6 billion; 34,000 FOBTs.

- Department for Digital, Culture, Media and Sport consultation:
- April 2019: Maximum bet limit reduced from £100 a spin to £2.

 Still as popular-just takes longer to lose money.

Neurocognitive performance: preferred form

- Goudriaan et al., (2005)
 - slot machine gamblers greater impairments in decisionmaking vs casino gamblers.
- Lorains et al., (2014)
 - strategic gamblers influenced by gains and losses and inconsistent choice style.
 - non-strategic gamblers less sensitive to losses and poor learning during decision making.
- Navas et al., (2017)
 - non-strategic gamblers higher delay discounting.
 - strategic gamblers higher cognitive distortions and selfreported reward sensitivity.

Present study: Aims

 Heterogeneity on neurocognitive and questionnaire measures of impulsivity and risky choice in disordered gamblers.

FOBTs vs non-FOBT group.

 Considering heterogeneity in previous studies (strategic vs. non-strategic form preferences) predicted that FOBT preferences would also predict neurocognitive performance.

Method

- 101 pathological gamblers
 - 92 male
 - age M = 37.6, SD = 11.3

Screening questionnaire

- demographic data
- preferred form of gambling
- family history of disordered gambling
- IQ (NART; WASI)
- Mental health
 - Anxiety (Beck Anxiety Inventory: BAI)
 - Depression (Beck Depression Inventory II: BDI-II)
- Impulsivity
 - (UPPS-S): negative urgency, positive urgency, (lack of) planning, (lack of) perseveration, and sensation seeking.

Method: preferred form of gambling

FOBT

n=43

Other

n=58

Neurocognitive assessment

- Cambridge Gamble Task (CGT): Risky decisionmaking.
- Probabilistic Reversal Learning Task (PRL): Perseverative responding.

- Kirby Monetary Choice Questionnaire (Kirby MCQ): Delay discounting.
- Stop-Signal Task (SST): Response inhibition.

Cambridge Gambling Task

- Risk-taking behaviour and decision-making under uncertainty
 - Is the yellow token under a red or blue box?
 - Subjects must guess.
- Proportion of choice of most likely outcome, deliberation time, and proportion of points bet.

Red/Blue ratio can be 9:1, 8:2, 7:3, and 6:4.

Probabilistic Reversal Learning Task

- 40 trials: selection of one stimulus positively reinforced 80%.
- 40 trials: previously incorrect stimulus now correct on 80%.

Measures:

- number of errors
- consecutive errors following the reversal (perseveration)
- number of response switches following the misleading (probabilistic) feedback.

Perseverative responding

Results

- Non significant:
 - age, gambling severity, IQ
 - UPPS-P (impulsivity) & subscales.
- Significant:
 - Non-FOBT group (38.6%) more likely to have a family history of problem gambling than the FOBT group (23.8%)
 - FOBT group scored significantly lower than the non-FOBT group on the BDI and BAI (depression and anxiety).

CGT: Quality of decision-making

CGT: Deliberation times

CGT: Betting behaviour

Probabilistic Reversal Learning

Probabilistic Reversal Learning

Summary

- Comparable demographics and gambling severity.
- Analysis indicated both cognitive strengths and weaknesses in FOBT gamblers:
- Cambridge gamble task:
 - FOBT group made fewer "rational" choices (i.e., of the majority colour) on decisions with more uncertain odds.
- Probabilistic reversal learning task:
 - FOBT group demonstrated lower levels of perseveration, potentially indicative of enhanced cognitive flexibility following the rule switch.

Findings: Cambridge Gamble Task

- Differences in decision quality:
- FOBT group: lower proportion of advantageous choices, difference was strongest at 6:4 and 7:3 ratios, where outcomes were most uncertain.

"Gamblers Fallacy"

Findings: Cambridge Gamble Task

- Deliberation times to colour choices differed by preferred form, as interaction with box ratio.
 - Non-FOBT: expected pattern; deliberation times faster as decisions more certain (i.e. 9:1 ratio).
 - FOBT: opposite pattern; longer deliberation at more certain (9:1) colour ratios.
- Possibly 'Gambler's fallacy' at most certain ratios.
- Anticipatory Regret: emotion associated with counterfactual thinking.
- Probability not sole factor driving colour choice.
- May be further expounded by gamblers who exhibit deficient emotion regulation.

Findings: Probabilistic Reversal Learning

- Both groups more errors in second stage.
- Non-FOBT group perseverated significantly more than FOBT group: higher cognitive flexibility.
- Reflective of cognitions associated with the different forms of gambling:
 - Non-FOBT: relatively long outcome resolution, limited variation in gambling mechanism: no "switching".
 - FOBT: continual updating of information requires cognitive flexibility.

Conclusion

- Gamblers who prefer different forms exhibit different decisionmaking strategies.
- Psychosocial treatment could benefit from assessing and targeting these deficits.
- E.g. metacognitive training skills.

Thank you

- Steve Sharman: University of East London, UK
- Luke Clark: University of British Columbia, Canada
- Rosanna Michalczuk: Bethlem Royal Hospital, UK
- Rachel Cocks: Royal Holloway, UK
- Henrietta Bowden-Jones: National Problem Gambling Clinic, UK.

Contact details:

Amanda Roberts:

aroberts@lincoln.ac.uk

