





# cannTEEN: an observational, longitudinal study investigating how cannabis differentially affects teenagers and adults

Dr Will Lawn

will.lawn@ucl.ac.uk



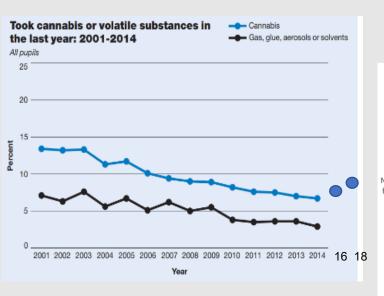
No conflicts of interest

SSA annual conference Friday 8<sup>th</sup> November 2019 Clinical Psychopharmacology Unit University College London

#### Outline

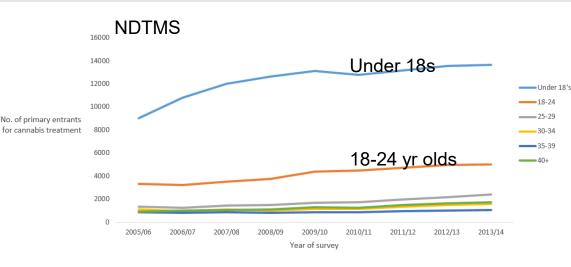


- Introduction: adolescence as a period of heightened vulnerability to the harmful effects of cannabis?
- Methods and aims of the CannTeen study
- Preliminary cross-sectional results
  - Addiction
  - Psychotic-like symptoms
  - Neural correlates of reward processing
- Discussion


#### Outline

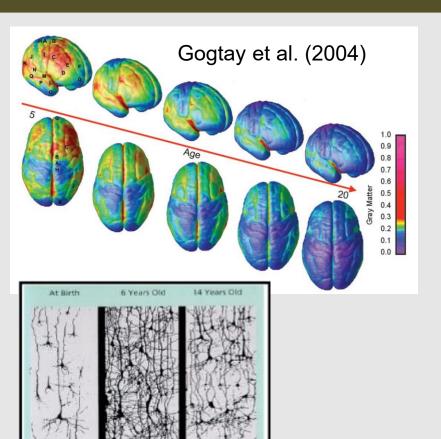


- Introduction: adolescence as a period of heightened vulnerability to the harmful effects of cannabis?
- Methods and aims of the CannTeen study
- Preliminary cross-sectional results
  - Addiction
  - Depression
  - Psychotic-like symptoms
  - Neural correlates of reward processing
- Discussion


# Teenage cannabis use

- **'UCL**
- 19.3% of 15 year olds in England used cannabis in the last year (NHS Digital).
- Downward trend in England since 2000, but creeping back up since 2014?




<u>11-15 year olds</u>. Smoking, drinking and drug use among young people in England, NHS Digital

Treatment need for cannabis problems is greatest for teenagers



# Adolescent brain development



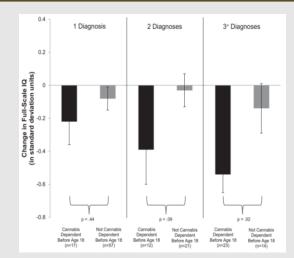


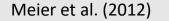
Galvan (2010); Luna et al., 2010); Hurd et al. (2019)

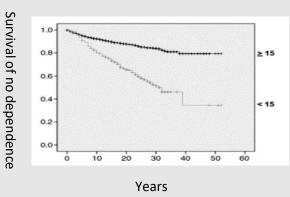
- Neural, cognitive, emotional and social development continues.
- Endocannabinoid system continues to develop.
- Reward processing and executive functions still maturing.

A time of heightened vulnerability?

# Greater vulnerability to cannabis during adolescence?





• IQ and cognition.


· Psychosis.

Brain structure & function.

Addiction.







Ehlers et al. (2010)

# Limitations with existing research



- Lack of direct comparisons between current teenage and adult cannabis users, or inclusion of age-matched controls.
- Often cross-sectional designs with retrospective measures of age-of-onset.
- Lack of research into changes during teenage years, relative to during adult years.
- Crude measures of cannabis use and lacking measures of biological cannabinoid levels.
- No study has compared longitudinal changes in teenage cannabis users with adult cannabis users (who did not use regularly as a teenager), against age-matched controls.

## Outline



- Methods and aims of the CannTeen study
- Preliminary cross-sectional results
  - Addiction
  - Psychotic-like symptoms
  - Neural correlates of reward processing
- Discussion

# Aims and general hypotheses of CannTeen



- Aim: to investigate the differential associations between cannabis use and mental health, cognition and brain health in teenagers and adults.
- General hypothesis: over one year, teenage cannabis users (relative to age-matched controls) will show a worse trajectory than adult cannabis users (relative to agematched controls) in the above domains.

## Methods



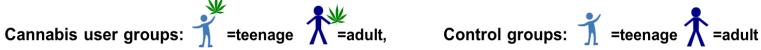
Abstinent from alcohol and cannabis for 12 hours, all other drugs for 24 hours.

Study 1: Longitudinal (n=272)

| Baseline | +3 months | +6 months | +9 months | +12 months |
|----------|-----------|-----------|-----------|------------|
| βλ*      | λ*        | λ*        | λ*        | λ*         |



Study 2: Longitudinal s/fMRI (n=140)




#### Study 1

- Observational, longitudinal.
- Four groups.
- n=68 in each. Sex split evenly.
- Once every 3 months, for 1 year.

#### Study 2

- A subset of above participants.
- n=35 in each group.





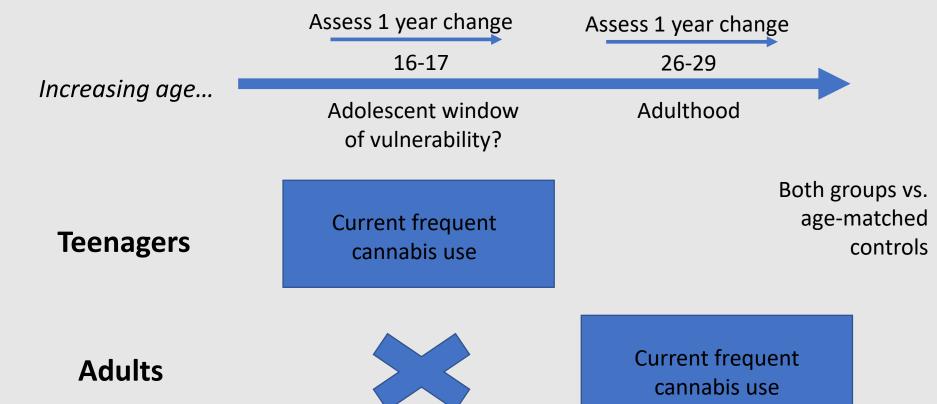


Assessments:  $\beta$ =Baseline,  $\lambda$ =Longitudinal,  $\star$ =Biological assays,  $\square$ =Brain imaging



# **Participants**




|            | Controls                                                                                                                                                      | Users 🧩                                                                                                      |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Teenagers: | <ul> <li>16-17 years</li> <li>Used cannabis ≤10 days ever.</li> <li>Used tobacco or cannabis ≥1 days.</li> <li>No recent (past month) cannabis use</li> </ul> | <ul> <li>16-17 years</li> <li>Use cannabis 1-7<br/>days per week</li> </ul>                                  |  |
| Adults:    | <ul> <li>26-29 years</li> <li>Used cannabis ≤10 days ever.</li> <li>Used tobacco or cannabis ≥1 days.</li> <li>No recent (past month) cannabis use</li> </ul> | <ul> <li>26-29 years</li> <li>Use cannabis 1-7 days per week</li> <li>No weekly use before age 18</li> </ul> |  |

#### Exclusion criteria for all:

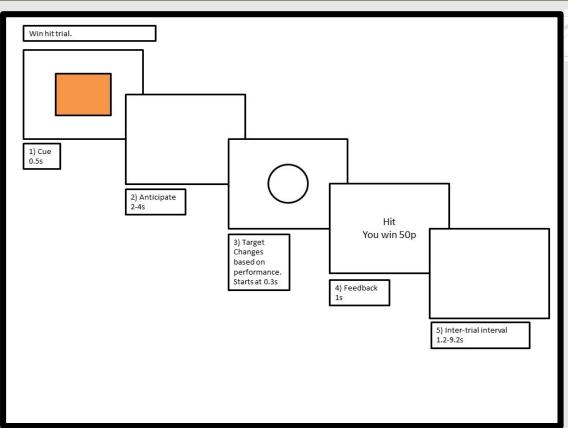
- 1. Regular use of other illicit drugs.
- 2. Receiving treatment for mental health condition.
- History of psychosis.

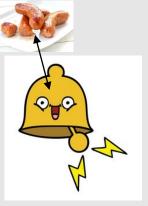
# User participants

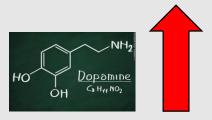




Never regular use


# Preliminary cross-sectional analyses





- *Current recruitment*. Very close to completing recruitment for the baseline sample for study 1 (n=255) and study 2 (n=115).
- Addiction. MINI for DSM-5 CUD (Sheehan et al., 1998) and CUDIT-R (Adamson et al., 2010).
- *Psychotic-like symptoms*. (2 week adapted) Psychotomimetic States Inventory (Mason et al., 2008).
- Neural correlates of reward processing. Monetary incentive delay (MID) task (Knutson et al., 2001)

# Monetary incentive delay task











Key contrasts:

Reward anticipation (vs. no reward)

Reward feedback (vs. no reward)

# Cross-sectional hypotheses



- Age-group by user-group interactions, such that teenage cannabis users have:
  - stronger addiction to cannabis than adult cannabis users.
  - greater psychotic-like symptoms than adult cannabis users.
  - weaker neural response during reward anticipation and feedback.

(relative to age-matched controls)

#### Outline



- Introduction: adolescence as a period of heightened vulnerability to the harmful effects of cannabis?
- Methods and aims of the CannTeen study
- Preliminary cross-sectional results
  - Addiction
  - Psychotic-like symptoms
  - Neural correlates of reward processing
- Discussion

# Participant demographics



|                                                        | Teenager     |              | Adult        |              | Difference            |
|--------------------------------------------------------|--------------|--------------|--------------|--------------|-----------------------|
| Variable                                               | Control      | User         | Control      | User         |                       |
| Sex (f/m) [total]                                      | 34/29 [63]   | 30/37 [67]   | 30/30 [60]   | 31/34 [65]   | None                  |
| Age (years) (SD)                                       | 17.13 (0.47) | 17.10 (0.58) | 27.36 (1.02) | 27.63 (1.19) | Adults > teenagers*** |
| Cannabis frequency (days/week) (SD)                    | NA           | 4.44 (1.91)  | NA           | 4.31 (2.02)  | None                  |
| Cannabis quantity<br>(grams/day on day of use)<br>(SD) | NA           | 1.13 (0.84)  | NA           | 0.56 (0.63)  | Teenagers > adults*** |
| Number of total days of cannabis use (SD)              | 3.15 (2.89)  | NA           | 4.18 (3.04)  | NA           | None                  |
| AUDIT (SD)                                             | 4.51 (3.51)  | 6.21 (4.52)  | 5.47 (4.36)  | 6.35 (4.34)  | Users > controls*     |
| Mother's education level (SD)                          | 4.89 (1.90)  | 4.86 (2.07)  | 4.07 (2.46)  | 4.52 (2.14)  | Teenagers > Adults*   |

<sup>\*</sup>p<0.05, \*\*\*p<0.001

# Addiction within users (DSM)



- Teenage n=67, adult n=64
- DSM: χ<sub>3</sub>=16.56, *p*<0.001

Logistic regression predicting severe CUD

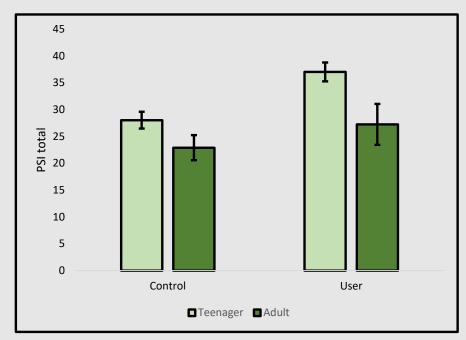


| Predictor                                 | Odds ratio (OR) | 95% CI OR  | p value |
|-------------------------------------------|-----------------|------------|---------|
| Age (teen vs. adult)                      | 3.28            | 1.26, 8.53 | 0.015   |
| Cannabis frequency (dpw)                  | 1.41            | 1.12, 1.77 | 0.004   |
| Cannabis quantity (grams on a day of use) | 1.35            | 0.75, 2.46 | 0.319   |
| Sex (male vs. female)                     | 0.80            | 0.34, 1.90 | 0.606   |
| Mother's education, SES                   | 0.99            | 0.80, 1.23 | 0.940   |

# Addiction with users (CUDIT-R)



- Teenage n=67, adult n=65
- t<sub>130</sub>=4.85, *p*<0.001, d=0.60


Linear regression predicting CUDIT-R score

| 18<br>16                                                             |          | ***   |  |
|----------------------------------------------------------------------|----------|-------|--|
| CUDIT-R total score 8 10 10 4 21 21 21 21 21 21 21 21 21 21 21 21 21 | 1        |       |  |
| 0                                                                    | Teenager | Adult |  |

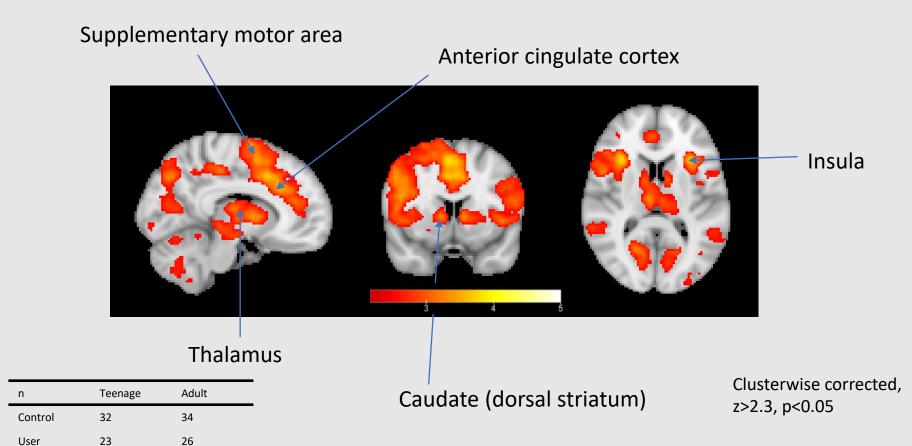
| Predictor                                 | Unstandardised beta | SE (b) | p value |
|-------------------------------------------|---------------------|--------|---------|
| Age (teen vs. adult)                      | 3.07                | 0.86   | 0.001   |
| Cannabis frequency (dpw)                  | 1.03                | 0.20   | <0.001  |
| Cannabis quantity (grams on a day of use) | 1.72                | 0.57   | 0.003   |
| Sex (male vs. female)                     | -1.03               | 0.79   | 0.20    |
| Mother's education, SES                   | -0.248              | 0.20   | 0.21    |

# Psychotic-like symptoms



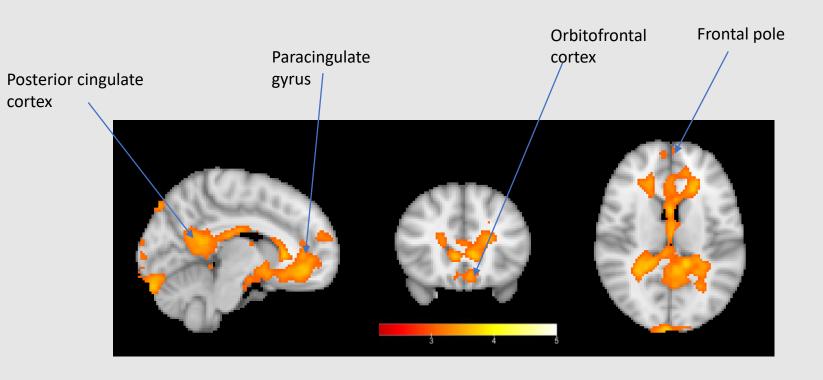


n Teenage Adult


Control 63 60

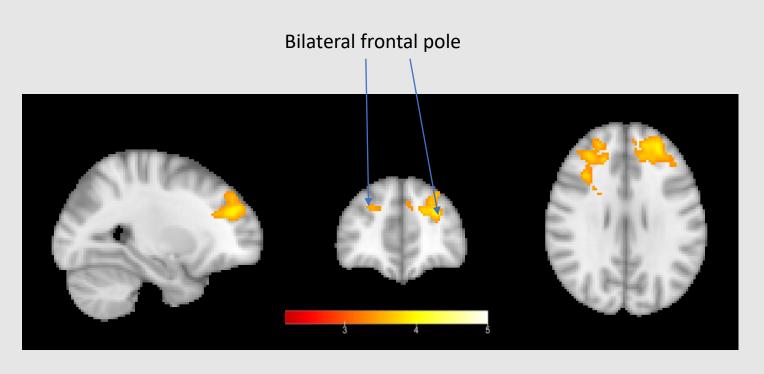
User 66 65

- Teenagers > adults ( $F_{1,250}$ =15.157, p<0.001,  $n_p^2$ =0.057).
- Users > controls ( $F_{1,250}$ =12.131, p=0.001,  $n_p^2$ =0.046)
- No interaction between age-group and user-group.
- Additive, rather than interactive, effect of age-group and user-group.


# MID – whole brain – anticipate – overall task






# MID – whole brain – feedback – overall task





# MID – whole brain – feedback – users > controls





#### Outline



- Introduction: adolescence as a period of vulnerability to the harmful effects of cannabis?
- Methods and aims of the CannTeen study
- Preliminary cross-sectional results
  - Addiction
  - Psychotic-like symptoms
  - Neural correlates of reward processing
- Discussion

# Summary of results



- Teenage cannabis users are more likely to have cannabis use disorder than adult cannabis users.
- Teenagers (vs. adults) and cannabis users (vs. controls) have more subclinical psychotic-like symptoms. But no differential association between cannabis use and psychotic-like symptoms for teenagers and adults.
- Cannabis users have greater brain activity than controls in the frontal pole when winning money, but no relationship with age and no interaction between age and user-group.

#### Discussion



- Window of adolescent vulnerability for developing cannabis use problems.
  - Why teenage vulnerability?
  - Dare to delay?
  - Or different populations?
- Additive effect on subclinical psychotic-like symptoms of being a teenager and a cannabis user.
- Cannabis users neurally hypersensitive to reward feedback.
- Strengths and limitations of existing, cross-sectional data.
- Longitudinal changes to come.

# Thanks for listening! Acknowledgements

# **'UCL**

#### **Funding:**

MRC

#### The CannTeam:

Dr Claire Mokrysz\*

Dr Tom Freeman\*

Katherine Petrilli

Rachel Lees\*

Dr Anya Borissova

Dr Matt Wall

Dr Michael Bloomfield

**Prof Val Curran** 

Many MSc students

\*special thanks!



















