Ketamine for the treatment of substance use disorders: a systematic review

Mollaahmetoglu, O.M., Walsh, Z., Rootman, J., Golsof, S., Marsh, B., Morgan, C.J.A.

1.Introduction:

- Ketamine is an N-methyl-Daspartate (NMDA) receptor antagonist with rapid and sustained antidepressant effects¹.
- There is research demonstrating therapeutic benefits of ketamine for mental health disorders, including substance use disorders².
- The aim of this review is to systematically collate the evidence on ketamine's therapeutic effects in substance use disorders.

2. Methods:

- Systematic review of Medline,
 PsychInfo and Clinical Trials.gov
- ✓ Included randomised controlled trials, non-randomised clinical trials and other observational studies of ketamine on substance use disorders in humans
- Excluded Case studies, letters/replies to editors.

3. Results:

Alcohol (n=4):

Authors, date & design	Patient demographics	Ketamine treatment	Control	Results
Krupitsky et al., 1992, Russia	186 males with alcoholism	Intramuscular ketamine	Aversive therapy	At 1 year 69.8% of the ketamine
Randomised controlled trial		(3mg/kg) & Affective Contra		group abstinent and 27.9%
		attribution therapy.		relapsed.
Krupitsky et al., 1997 Russia	211 males, alcoholism with	Intramuscular ketamine	Conventional psychotherapy	65.8% of ketamine group
Non-randomised clinical	alcohol withdrawal syndrome	(2.5mg/kg) & Ketamine		abstinent at 1 year vs 24% of
study		psychotherapy (KTP).		control group.
Dakwar et al., in press. USA	40 participants, (21 females)	Ketamine 0.11 mg/kg over 2	Active control midazolam	At 21 days 68.6% of control and
Randomised controlled trial	with alcohol dependence	min bolus followed by 0.6	0.025 mg/kg	98.6% of ketamine group was
		mg/kg over 50 minutes.		abstinent.
Wong et al., 2015, USA	23 participants, (14 females)	Initial infusion dose mean:	N/A	Ketamine resulted in a non-
Retrospective cohort review	alcohol withdrawal syndrome	0.21 mg/kg per hour.		significant decrease in
				benzodiazepine requirements.
	,			0

Cocaine (n=4):

Dakwar et al.,2014a, USA Randomised controlled cross over trial	8 participants (1 female), dependence on crack cocaine	52 minutes infusions of 0.41 mg/kg and 0.71 mg/kg.	Lorazepam active control	Ketamine increased motivation for changing cocaine use, reduced craving and cocaine use at 4 weeks.
Dakwar et al.,2014b, USA Randomised controlled cross over trial	8 participants (1 female), dependence on crack cocaine	52 minutes infusions 0.41mg/kg first dose 0.71 mg/kg second dose.	Lorazepam active control	Mystical effects mediated the therapeutic effect of ketamine on motivation to quit cocaine but not on craving.
Dakwar et al., 2017, USA Randomised controlled cross over trial	20 participants (9 females), cocaine dependence	Ketamine 0.11mg/kg 2 min bolus followed by 0.60 mg/kg.	Active control 2 minute saline bolus followed by midazolam 0.025 mg/kg	67% reduction in cocaine choices with ketamine compared to baseline. Cocaine use reduction only for several days.
Dakwar et al.,2019, USA Randomised controlled trial	55 participants (14 females), cocaine dependence	Ketamine 0.5 mg/kg, slow drip 40 minutes infusion.	Active control midazolam 0.025 mg/kg	Abstinence in ketamine group 48.2% vs to 10.7% in midazolam group.

Opiates (n=3):

Krupitsky et al., 2002, Russia Randomised controlled trial	70 participants, (15 females), heroin dependence	2.0 mg/kg ketamine infusion vs 0.2 mg/kg Ketamine infusion.	N/A	At 2 years, abstinence in the high dose group> low dose group.
Krupitsky et al., 2007, Russia, Randomised controlled trial	59 participants (10 females), heroin dependence	Intramuscular ketamine at 2mg/kg Single vs 3 doses with KTP.	Addiction counselling	At 12 months, 50% of multiple KPT group and 22.2% of single KPT group abstinent.
Jovaisa et al., 2006, Lithuania Randomised controlled trial	50 participants (7 females), opiate withdrawal syndrome	Single dose of 0.5 mg/kg/hr ketamine infusion.	Saline solution	Ketamine led to less additional clozapine and clonazepam at 48 hours. At 4 months: no difference in opiate use.

- Increased abstinence at 21 days and 1 year followup with ketamine vs control³⁻⁵.
- 33% of the ketamine group remained abstinent at 3 years, however there was no comparison followup data for control group⁴.
- Ketamine was found to be safe for managing alcohol withdrawal syndrome⁶.
- Single dose of ketamine increased motivation to quit cocaine, reduced craving, and reduced cocaine self-administration⁷.
- At 2 & 4 weeks: ketamine was associated with increased abstinence⁷⁻⁸.
- At 6 months: 44% in the ketamine group was abstinent, 0 in the control⁹.
- Higher abstinence with repeated KPT than single KTP and with high dose ketamine (2mg/kg) vs low dose ketamine (0.2mg/kg) at 1 and 2 years¹⁰⁻¹¹.
- Ketamine was an effective adjunct treatment for opiate withdrawal¹².

4. Conclusions:

- Some evidence to support ketamine's therapeutic effects in substance use disorders from a small number of studies³⁻¹³.
- Limitations of included studies: Lack of clarity over randomisation and allocation concealment, lack of placebo control, small sample sizes, ineffective blinding, missing data, lack of pre-registration and pre-specified statistical analysis plan.
- Need for higher quality, randomised, active placebo controlled, appropriately blinded and larger studies with pre-registration.
- Ongoing studies include a trial of ketamine for the treatment of alcohol use disorders taking place at the University of Exeter and University College London¹⁴.
- Another ongoing trial is examining the effects of ketamine and psychological therapy for cannabis use disorders at the New York¹⁵.

5. References:

1. Serafini, G., Howland, R.H., Rovedi, F., Girardi, P., Amore, M. (2014). The role of ketamine in treatment-resistant depression: a systematic review. *Current Neuropharmacology, 12*(5), 444-61. doi: 10.2174/1570159X12666140619204251. 2. Ivan Ezquerra-Romano, I., Lawn, W., Krupitsky, E., Morgan, C. J. A. (2018). Ketamine for the treatment of addiction: Evidence and potential mechanisms. *Neuropharmacology, 142, 72-82.* doi: 10.1016/j.neuropharm.2018.01.017 3. Dakwar, E. Glutamatergic Modulation of Disordered Alcohol Use, *ClinicalTrials.gov*, *https://clinicaltrials.gov/ct2/show/NCT02539511?id=NCT025395118draw=2&rank=1* 4. Krupitsky, E.M., Grinenko, A.Y. (1997). Ketamine psychedelic therapy (KPT): a review of the results of ten years of research. *Journal of Psychoactive Drugs, 29*(2), 165-83.5. Krupitsky, E.M., Grinenko, A.Y., Berkaliev, T.N., Paley, A. I., Tetrov, U. N., Mushkov, K. A. & Borodikin, Yu S. (1992). The Combination of Psychedelic and Aversive Approaches in Alcoholism Treatment *Quarterly, 9*(1), 99-105, doi: 10.1300/j020v09n01_09 6. Wong, A., Benedict, N.J., Armahizer, M.J., Kane-Gill, S.L., (2015). Evaluation of adjunctive ketamine to benzodiazepines for management of alcohol withdrawal syndrome. *Ann Pharmacother, 49*(1), 14-9. doi: 10.1177/1060028014555859. 7. Dakwar, E., et al. (2014). The effects of subanesthetic ketamine infusions on motivation to quit and cue-induced craving in cocaine-dependent research volunteers. *Biological Psychiatry, 76*(1): 40-46. 8. Dakwar, E., et al. (2017). Cocaine self-administration disrupted by the N-methyl-D-aspartate receptor antagonist ketamine: a randomized, crossover trial. *Molecular psychiatry 22*(1): 76-81. 9. Dakwar et al. (2019). A Single Ketamine Infusion Combined With Mindfulness-Based Behavioral Modification to Treat Cocaine Dependence: A Randomized Clinical Trial. *Am J Psychiatry, Jun 24*:appiajp201918101123, [Epund a Hov-year follow-up. *Journal of Substance Abuse Treatment, 23*(4), 273-283. 11. Krupitsky, E. M., et al. (2007). Single versus r

Declaration of Conflicts of interest: CJA Morgan has consulted for Janssen, GlaxoSmithKline and Beckley canopy therapeutics. All other authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this review.

Contact details:

Ozden Merve Mollaahmetoglu, Email: om301@exeter.ac.uk Twitter: @mervemolla

