Losing Control: Investigating the role of behavioural control in heavy drinking

Andrew Jones University of Liverpool Psychological Sciences

Behavioural control

Addiction is characterized by a 'loss of control', or a failure of our selfcontrol

Operationalising 'control'

Inhibitory control – 'the (in)ability to stop, change or delay a response that is no longer appropriate'

A key role in 'Impulsivity' and 'Executive Functioning' (Bickel et al, 2013)

What is the role of inibitory control?

- Deficits in IC in alcohol dependence (g = .40) and heavy drinking (g = .25) (Smith et al 2014)
- Predicts Hazardous Drinking (Christiansen et al., 2013; Houston et al., 2015)
- Treatment success / relapse (Rupp et al., 2016)
- Escalation of drinking: Heavy > Dependence (Rubio et al., 2008)
- Likelihood of alcohol involvement in adolescence (Fernie et al., 2013)

Over-simplistic view... fluid control?

... abrupt environmental, physiological, or emotional events may cause transient "state"

Drug-related cues Acute alcohol effects Ego-depletion

EVENT CONTROL DRINKING

Cue-specific training Self-control training Motivational Biases Moderate Stress/Arousal

Direct manipulations of inhibitory control (motivational biases)

Intra-individual fluctuations in Inhibitory Control

Daily	level
and the second second	

Planned	.859 (.027)*	.766870
Craving change	.025 (.005)*	.015035
SSRT change	.008 (.002)*	.004012
Energetic change	008 (.007)	022005
Sad change	017 (.006)*	029005
Drowsy change	003 (.005)	013003
Happy change	.007 (.008)	007021

Jones et al (submitted)

Exposure to alcohol-related cues

Figure 2. Mean Stop Signal Reaction Time (SSRT) scores (and standard errors) for each picture set during the stop-signal task.

Jones and Field (2015)

Meta-analysis suggests a robust effect of alcohol-related cues on inhibitory control (Jones et al, in prep)

Exposure to alcohol-related cues (2)

Acute alcohol effects

Stress / Arousal

Attentional bias, inhibitory control and acute stress in current and former opiate addicts

Constantinou et al (2010)

Acute stress impairs inhibitory control based on individual differences in parasympathetic nervous system activity

Roos et al (2017)

Stress-Level Cortisol Treatment Impairs Inhibitory Control of Behavior in Monkeys

Lyons et al (2010)

Go no-go performance under psychosocial stress: Beneficial effects of implementation intentions

Scholz et al (2009)

McGrath, Jones and Field (2016)

Back to the model?

Drug-related cues
Acute alcohol effects
Ego-depletion
High and Low Arousal/Stress
Motivational Biases
Overconfidence in self-control

EVENT

CONTROL

DRINKING

What are the implications?

Experimental and Clinical Psychopharmacology 2013, Vol. 21, No. 1, 8-16 © 2012 American Psychological Association 1064-1297/13/\$12.00 DOI: 10.1037/a0030683

The Effects of Cue-Specific Inhibition Training on Alcohol Consumption in Heavy Social Drinkers

Andrew Jones and Matt Field University of Liverpool, Liverpool, United Kingdom

Continued

Robust effects

Research review

Inhibitory control training for appetitive behaviour change: A meta-analytic investigation of mechanisms of action and moderators of effectiveness

Andrew Jones ^{a, b} A ⊠, Lisa C.G. Di Lemma ^{a, b}, Eric Robinson ^{a, b}, Paul Christiansen ^{a, b}, Sarah Nolan ^c, Catrin Tudur-Smith ^c, Matt Field ^{a, b}

A. Jones et al. / Appetite 97 (2016) 16-28

			Experimental	Control		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Std. Mean Difference	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Alcohol							
Bowley et al (2013)	0.441	0.16	19	20	4.9%	0.44 [0.13, 0.75]	
Di Lemma et al (unpublished)	0.614	0.129	30	30	5.7%	0.61 [0.36, 0.87]	_
Houben et al (2011)	0.34	0.161	25	27	4.9%	0.34 [0.02, 0.66]	
Jones & Field (2013) Study 1	0.476	0.129	30	30	5.7%	0.48 [0.22, 0.73]	
Jones & Field (2013) Study 2	0.246	0.129	30	30	5.7%	0.25 [-0.01, 0.50]	-
Subtotal (95% CI)			134	137	26.9%	0.43 [0.30, 0.56]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 4.51, c	df = 4 (P = 0.34); I ² = 11%						
Test for overall effect: Z = 6.46 (P < 0.000	001)						

A comparison of three types of web-based inhibition training for the reduction of alcohol consumption in problem drinkers: study protocol

Andrew Jones¹, Elly McGrath¹, Katrijn Houben², Chantal Nederkoorn², Eric Robinson¹ and Matt Field^{1*}

Included:

Online intervention
Four weeks of Inhibitory
control training / control
Daily alcohol diary

No evidence of translation?

Training did not change inhibitory control.

Part of a wider debate...

RESEARCH ARTICLE

The Effectiveness of Cognitive Bias Modification Interventions for Substance Addictions: A Meta-Analysis

Ioana A. Cristea , Robin N. Kok, Pim Cuijpers

Confusing procedures with process when appraising the impact of cognitive bias modification on emotional vulnerability[†]

Ben Grafton, Colin MacLeod, Daniel Rudaizky, Emily A. Holmes, Elske Salemink, Flaine Fox and Lies Notebaert

Conclusions

Evidence suggests a link between 'loss of control' and drinking status.

Models are over-simplistic...don't take into account transient nature of control

Certain 'events' can decrease behavioural control, and as a result increase the risk of (re) lapse / consumption.

ICT demonstrates promise in the lab, but (as of yet) has not translated to the real world.

Future research

Building a richer model of inhibitory control in alcohol use

An ecological momentary assessment of proactive control and alcohol use | Registered: 2017-05-12

21:34 UTC

Jones, Field, Verbruggen & 1 more

10 contributions

• ICT – back to the drawing board?

Thanks...

Matt Field

Paul Christiansen

Eric Robinson

Katrijn Houben

Chantal Nederkoorn

Brian Tiplady

Email <u>ajj@liv.ac.uk</u> Twitter @ajj 1988