Addiction: From Brain Mechanisms to New Treatments

SSA York 2016

David Nutt FMedSci Edmond J Safra Professor of Neuropsychopharmacology Imperial College London

<u>d.nutt@imperial.ac.uk</u> profdavidnutt@twitter.com

Health Warning: Please don't lie about my research and funding

Elements of addiction

Possible neurotransmitters

Nutt: Drugs without the hot air

Stopping use?

Block the drug getting to its binding site

- Antagonists naltrexone for heroin (low compliance)
- (Dopamine reuptake blockers failed for cocaine)
- Vaccines nicotine, cocaine (under study)

Block elements of drugs effects

- Opioid antagonists for alcohol nalmefene naltrexone
 - ? Prevent loss of control

Substitution therapy

- Methadone, buprenorphine for heroin
- Sodium oxybate, baclofen for alcohol
- Varenicline for tobacco

Dopamine: The midbrain dopamine system may be a common reward system for stimulants – but ? other drugs

Adapted from Stefan et al

... and how we might get cured

Intravenous Methylphenidate placebo 0.025 mg/kg 0.1 mg/kg В [C-11]Raclopride

For stimulants dopamine = reward

Volkow et al 1999

But not all drugs release dopamine Heroin 50mg i.v. gives a good "high"

Daglish MRC, Williams TM, Wilson SJ, Taylor LG, Eap CB, Augsburger M, Giroud C, Brooks DJ, Myles JS, Grasby P, Lingford-Hughes AR, Nutt DJ [2008] Brain dopamine response in human heroin addiction. Brit J Psychiatry 193: 65-72 PMID: 18700222

But there is NO release of dopamine

Daglish MRC, Williams TM, Wilson SJ, Taylor LG, Eap CB, Augsburger M, Giroud C, Brooks DJ, Myles JS, Grasby P, Lingford-Hughes AR, Nutt DJ [2008] Brain dopamine response in human heroin addiction. Brit J Psychiatry 193: 65-72 PMID: 18700222

Not all drugs of abuse result in detectable increases in dopamine in man

Dopamine and human addiction What we can be sure of

•Only stimulants reliably release dopamine (Volkow etc)

•Dopamine-rich areas esp n accumbens respond to stimulant drugs + their drug cues and reward - why ?motivation

•Dopamine promoting drugs eg agonists and L-DOPA in Parkinson's can lead to addiction-like compulsive behaviour

•Dopamine receptor and uptake blockers have disappointingly little therapeutic value

→ exception = bupropion (Zyban) in smoking

Dopamine and addiction- other roles?

So – dopamine for reward? – no or anticipation? – no or habit? - probably or impulsivity/compulsivity? - maybe

Or something else ? urges/motivation/excitement/mood ? psychotic experiences

Imaging opioid receptors in addiction

Density of brain receptors in relation to symptoms

Measuring endorphin release

Increased mu opioid receptors in alcoholism and correlation with craving

1785

ALCOHOL AND THE HUMAN BRAIN

Fig. 4. Results of a [11C] Carfentanil PET study in detoxified alcohol-dependent patients. Availability of μ -Opiate-receptors in the ventral striatum of alcohol-dependent patients (left-hand side) was significantly elevated compared to healthy controls (right-hand side) and remained elevated during 6 weeks of abstinence (not shown) (Heinz et al. 2005a).

Increase in opiate receptor availability in the brain in early abstinence from alcohol and opiates.

Bristol studies Williams et al Brit J Psychiatry 2007

Alcohol consumption induces endorphin release in the human orbitofrontal cortex and nucleus accumbens

In nondependent alcohol drinkers following alcohol consumptio n (~24 g)

21 p<0.001; n=25; P=posterior; A=anterior

Endorphins theory of addiction

Endorphins theory of addiction

Memory neurotransmitters

GABA

- Major inhibitory neurotransmitter in brain
- Receptors are target for alcohol, benzodiazepines, GHB, other sedatives

Jung and Harris 2006 J Neurochem

Imaging human - α5 GABA-A receptors ¹¹C-Ro 15-4513 - a selective tracer

Note – not in the rat accumbens where is $\alpha 2$

Lingford-Hughes et al 2002 J Cereb Blood Flow Metab

¹¹C-Ro15 4513 binding in n accumbens reduced in alcoholics

Lingford-Hughes et al 2011 Journal of Psychopharmacology

Abstinence is not enough

Relapse after 23 years abstinence

Philip Seymour Hoffman Feb 2014

http://www.theguardian.com/society/2014/feb/04/philip-seymour-hoffmancuring-addiction-david-nutt

Health Research

Mental Health Research Network

ICCAM Platform – Mechanisms of Relapse

Preclinical Spontaneously Impulsive Model

Paterson et al 2015 Journal of Psychopharmacology

Anticipation of reward Monetary Incentive delay task

Emotional processing task

Selected neutral and aversive images from IAPS

- did not choose any images with alcohol/drug

Aversive

Nalmefene and MID task during alcohol intoxication fMRI

Monetary Incentive Delay

reward anticipation > neutral anticipation nalmefene > placebo

Significant decrease in globus pallidus and putamen and in brain stem

Nutt and Lingford-Hughes – in prepn

Addiction is a complex, multifaceted and enduring state

Different elements with different behavioural and molecular mechanisms

New treatments may require a more fine-grained analysis of these factors – and clarity of processes across species

Personalised treatment may be the best way forward

Thanks and questions

Further reading

All proceeds to DrugScience.org.uk

Follow me on twitter profdavidnutt@twitter.com

