

Anabolic Steroids and the Brain

By: Astrid Bjørnebekk The Anabolic Androgenic Steroid Research Group Oslo university hospital

Cognition

Mental
health

Brain health in old age

Brain effects

Long-term high dose AAS use

Structural brain changes of AAS – early evidence

Neurotoxic effects (in cell cultures)

Reduced memory in animal models

 Impaired memory and executive function in longterm AAS users

Medical effects of AAS that might impact brain health

- Hypogonadism
- Cardiovascular risks (Blood pressure, cholesterol, atherosclerosis, cardiac anatomy and function)

Long-term use of AAS and brain structure

Gray matter volumes and thickness

Structural brain imaging

AAS exposed weightlifters

Weightlifting
Controls - WLC

MRI-findings: AAS use associated with smaller brain volumes

AAS-exposed users had smaller brain volumes including:

- Total grey matter volume
- Cerebral cortex
- Putamen
- Corpus callosum

The differences seen in large volumes suggest general rather than regional specific effects

Bjørnebekk *et al.* Biological Psychiatry, 2017

Thinner cerebral cortex in widespread regions, more extensive with longer exposure

Bjørnebekk *et al.* Biological Psychiatry, 2017

Brain Imaging
Cognition
Mental Health

Time Point II

Brain Imaging Cognition

Mental health

Cardiovascular

Blood Biomarkers

3.5 yrs

- 140 unique AAS-users and 110 WLC
- Longitudinal data

Several collaboration partnerns - Interdisiplinary

Brain age prediction upon brain imaging data and artificial intelligence

AAS users had older appearing brains (higher *Brain Age Gap*) compared to WLC. Both for full brain volume and regional measures (not shown).

Scans from 133 AAS users and 99 WLC

Bjørnebekk et al, Biological Psych – CNNI, 2021

Accelerated brain-aging upon long term use and dependence

Trying to disentangle the brain age findings

- 1 Neurotoxicity
- **Cardiovascular effects**
- Neuro-inflammation & Oxidative stress
- 4 Hypogonadism

Cardiac structure and function are associated with brain age findings

Data is removed as findings are not published yet..

- Summary -

Long-term AAS use is associated with:

- ➤ Apparant brain aging compared to WLC
- Long-term AAS & dependence is associated with accelerated brain aging
- Cardiac structure and function is partly linked to brain aging in AAS users

... and thanks for your attention and to all contributing muscles and brains

Abdullah

Alumni; Hauger

The Anabolic Androgenic Steroid Research Group

